skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Pieter T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Starting in 2012 zooplankton sampling at Green Lake 4 was included in the long term monitoring data set at Niwot Ridge. Immediately after the ice has completely melted from the lakes, zooplankton samples are taken once a week for six consecutive weeks at the deepest portion of the lake from an inflatable raft. Zooplankton were sampled at the deepest location of each lake by pulling a conical net (Wisconsin net) vertically through the water column (i.e., vertical tow sample). For each zooplankton sample obtained, adult organisms were identified to species, or lowest taxonomic level (Chydoridae sp. and Bosminidae sp.). Larvae of cladocerans were counted together as neonates; calanoid and cyclopoid copepodites were counted together as nauplii. Individual body lengths of the first 50 -100 (when possible) individuals of each taxon were recorded using a calibrated eyepiece micrometer and means reported. 
    more » « less
  2. This dataset includes chlorophyll-a concentrations, periphyton biomass estimates, water quality measurements, and qualitative observations from a large-scale mesocosm experiment conducted in the Green Lakes Watershed, Colorado. The experiment was designed to test how earlier lake ice-off and increased dissolved organic material (DOM), associated with terrestrial plant encroachment in alpine watersheds, interactively influence aquatic food webs. In fall 2019, twenty 2600L “megacosms” were established at Sandy Corner (3300 m ASL; 40.042289, -105.584006), left to fill with snowmelt, and maintained throughout the 2020 open water season. The experiment followed a 2 × 2 randomized block design manipulating ice-off timing (via black vs. beige tank coloration) and DOM inputs (presence/absence of willow leaf packs), with five replicates per treatment. All tanks were seeded with sediments and zooplankton from both alpine and montane lakes (Green Lake 1 and Green Lake 4), and instrumented with thermistors recording surface and hypolimnion temperature every two hours year-round. Periphyton growth was monitored using clay tiles, sampled across five time points. Chlorophyll-a concentrations were extracted from filtered water samples and analyzed spectrophotometrically. Periphyton biomass was estimated via ash-free dry mass (AFDM) determinations, based on the mass lost on combustion of material scraped from tiles. Water quality was measured 1–2 times weekly using a YSI ProPlus multiprobe and Li-Cor quantum sensor, and snow/ice cover was qualitatively assessed monthly during winter. 
    more » « less
  3. This dataset contains temperature data from two Onset HOBO temperature pendant loggers installed in Green Lake 4’s inlet and outlet from summer 2019. High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. The inlet and outlet temperature data collected here, together with Niwot Ridge’s buoy deployed in Green Lake 4, allow us to understand lake hydrology, water budget, and stratification and mixing dynamics that drive seasonal in-lake processes to understand effects of warming. 
    more » « less
  4. Abstract Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Abstract The location of parasites within individual hosts is often treated as a static trait, yet many parasite species can occur in multiple locations or organs within their hosts. Here, we apply distributional heat maps to study the within- and between-host infection patterns for four trematodes (Alaria marcianae, Cephalogonimus americanus, Echinostomaspp. andRibeiroia ondatrae) within the amphibian hostsPseudacris regillaand two species ofTaricha.We developed heatmaps from 71 individual hosts from six locations in California, which illustrate stark differences among parasites both in their primary locations within amphibian hosts as well as their degree of location specificity. While metacercariae (i.e., cysts) of two parasites (C. americanusandA. marcianae) were relative generalists in habitat selection and often occurred throughout the host, two others (R. ondatraeandEchinostomaspp.) were highly localised to a specific organ or organ system. Comparing parasite distributions among these parasite taxa highlighted locations of overlap showing potential areas of interactions, such as the mandibular inner dermis region, chest and throat inner dermis and the tail reabsorption outer epidermis. Additionally, the within-host distribution ofR. ondatraediffered between host species, with metacercariae aggregating in the anterior dermis areas of newts, compared with the posterior dermis area in frogs. The ability to measure fine-scale changes or alterations in parasite distributions has the potential to provide further insight about ecological questions concerning habitat preference, resource selection, host pathology and disease control. 
    more » « less
  6. Abstract Despite the importance of virulence in epidemiological theory, the relative contributions of host and parasite to virulence outcomes remain poorly understood. Here, we use reciprocal cross experiments to disentangle the influence of host and parasite on core virulence components—infection and pathology—and understand dramatic differences in parasite‐induced malformations in California amphibians. Surveys across 319 populations revealed that amphibians' malformation risk was 2.7× greater in low‐elevation ponds, even while controlling for trematode infection load. Factorial experiments revealed that parasites from low‐elevation sites induced higher per‐parasite pathology (reduced host survival and growth), whereas there were no effects of host source on resistance or tolerance. Parasite populations also exhibited marked differences in within‐host distribution: ~90% of low‐elevation cysts aggregated around the hind limbs, relative to <60% from high‐elevation. This offers a novel, mechanistic basis for regional variation in parasite‐induced malformations while promoting a framework for partitioning host and parasite contributions to virulence. 
    more » « less